Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nucleic Acid Ther ; 32(5): 361-368, 2022 10.
Article in English | MEDLINE | ID: covidwho-1864945

ABSTRACT

RNA therapeutics, including siRNAs, antisense oligonucleotides, and other oligonucleotides, have great potential to selectively treat a multitude of human diseases, from cancer to COVID to Parkinson's disease. RNA therapeutic activity is mechanistically driven by Watson-Crick base pairing to the target gene RNA without the requirement of prior knowledge of the protein structure, function, or cellular location. However, before widespread use of RNA therapeutics becomes a reality, we must overcome a billion years of evolutionary defenses designed to keep invading RNAs from entering cells. Unlike small-molecule therapeutics that are designed to passively diffuse across the cell membrane, macromolecular RNA therapeutics are too large, too charged, and/or too hydrophilic to passively diffuse across the cellular membrane and are instead taken up into cells by endocytosis. However, similar to the cell membrane, endosomes comprise a lipid bilayer that entraps 99% or more of RNA therapeutics, even in semipermissive tissues such as the liver, central nervous system, and muscle. Consequently, before RNA therapeutics can achieve their ultimate clinical potential to treat widespread human disease, the rate-limiting delivery problem of endosomal escape must be solved in a clinically acceptable manner.


Subject(s)
COVID-19 , Lipid Bilayers , Humans , Lipid Bilayers/metabolism , COVID-19/genetics , COVID-19/therapy , Endosomes/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , RNA, Small Interfering/chemistry , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides, Antisense/metabolism , Oligonucleotides/metabolism
2.
Biochem Biophys Res Commun ; 614: 207-212, 2022 07 23.
Article in English | MEDLINE | ID: covidwho-1814155

ABSTRACT

Simple, highly sensitive detection technologies for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are crucial for the effective implementation of public health policies. We used the systematic evolution of ligands by exponential enrichment with a modified DNA library, including a base-appended base (uracil with a guanine base at its fifth position), to create an aptamer with a high affinity for the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein. The aptamer had a dissociation constant of 1.2 and < 1 nM for the RBD and spike trimer, respectively. Furthermore, enzyme-linked aptamer assays confirmed that the aptamer binds to isolated authentic SARS-CoV-2 wild-type and B.1.617.2 (delta variant). The binding signal was larger that of commercially available anti-SARS-CoV-2 RBD antibody. Thus, this aptamer as a sensing element will enable the highly sensitive detection of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , DNA/metabolism , Humans , Oligonucleotides/metabolism , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
3.
Adv Sci (Weinh) ; 8(23): e2101166, 2021 12.
Article in English | MEDLINE | ID: covidwho-1473797

ABSTRACT

Lipid-based nanoparticles have been applied extensively in drug delivery and vaccine strategies and are finding diverse applications in the coronavirus disease 2019 (COVID-19) pandemic-from vaccine-component encapsulation to modeling the virus, itself. High-throughput, highly flexible methods for characterization are of great benefit to the development of liposomes featuring surface proteins. DNA-directed patterning is one such method that offers versatility in immobilizing and segregating lipid-based nanoparticles for subsequent analysis. Here, oligonucleotides are selectively conjugated onto a glass substrate and then hybridized to complementary oligonucleotides tagged to liposomes, patterning them with great control and precision. The power of DNA-directed patterning is demonstrated by characterizing a novel recapitulative lipid-based nanoparticle model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-S-liposomes-that presents the SARS-CoV-2 spike (S) protein on its surface. Patterning a mixture of S-liposomes and liposomes that display the tetraspanin CD63 to discrete regions of a substrate shows that angiotensin-converting enzyme 2 (ACE2) specifically binds to S-liposomes. Subsequent introduction of S-liposomes to ACE2-expressing cells tests the biological function of S-liposomes and shows agreement with DNA-directed patterning-based assays. Finally, multiplexed patterning of S-liposomes verifies the performance of commercially available neutralizing antibodies against the two S variants. Overall, DNA-directed patterning enables a wide variety of custom assays for the characterization of any lipid-based nanoparticle.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/diagnosis , Liposomes/chemistry , Nanoparticles/chemistry , Oligonucleotides/chemistry , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/genetics , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , COVID-19/virology , Fluorescent Dyes/chemistry , HEK293 Cells , Humans , Liposomes/metabolism , Microscopy, Confocal , Oligonucleotides/metabolism , Protein Binding , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Tetraspanins/chemistry , Tetraspanins/metabolism
4.
Protein Sci ; 29(7): 1596-1605, 2020 07.
Article in English | MEDLINE | ID: covidwho-71902

ABSTRACT

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is rapidly spreading around the world. There is no existing vaccine or proven drug to prevent infections and stop virus proliferation. Although this virus is similar to human and animal SARS-CoVs and Middle East Respiratory Syndrome coronavirus (MERS-CoVs), the detailed information about SARS-CoV-2 proteins structures and functions is urgently needed to rapidly develop effective vaccines, antibodies, and antivirals. We applied high-throughput protein production and structure determination pipeline at the Center for Structural Genomics of Infectious Diseases to produce SARS-CoV-2 proteins and structures. Here we report two high-resolution crystal structures of endoribonuclease Nsp15/NendoU. We compare these structures with previously reported homologs from SARS and MERS coronaviruses.


Subject(s)
Betacoronavirus/chemistry , Endoribonucleases/chemistry , Middle East Respiratory Syndrome Coronavirus/chemistry , Oligonucleotides/chemistry , Severe acute respiratory syndrome-related coronavirus/chemistry , Viral Nonstructural Proteins/chemistry , Amino Acid Sequence , Betacoronavirus/genetics , Betacoronavirus/metabolism , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Endoribonucleases/genetics , Endoribonucleases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/metabolism , Models, Molecular , Oligonucleotides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2 , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL